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This paper employs continuum theory to examine the onset of a particular type of 
cellular thermal instability in a sample of nematic liquid crystal confined between 
two infinite, horizontal flat plates when subjected to a vertical temperature gradient. 
We consider the case in which the anisotropic axis is initially uniformly aligned 
perpendicular to the plates. Using Chebyshev polynomials, accurate numerical solu- 
tions for the critical temperature gradient are obtained and the variation of this 
quantity with a uniform magnetic field applied vertically across the plates is investi- 
gated. In particular we obtain the value of the magnetic field at which the nature of 
the instability changes from an oscillatory type to a stationary one. 

1. Introduction 
The occurrence of thermal instabilities in a sample of nematic liquid crystal confined 

between two horizontal, infinite flat plates when subjected to a vertical temperature 
gradient has been the subject of several investigations in recent years. Dubois- 
Violette (1974), Currie (1973) and Barratt & SIoan (1976) analyse the onset of a 
stationary convective instability in two particular simple experimental situations. 
In  one the anisotropic axis is initially uniformly aligned everywhere parallel to the 
plates (planar orientation) while in the other it is everywhere perpendicular to the 
plates (homeotropic orientation). Employing the continuum theory proposed by 
Ericksen (1961) and Leslie (1968a, b, 1969), the theoretical predictions of the above 
authors, €or samples of thickness 1 or & mm, are in good agreement with the experi- 
mental observations of Guyon & Pieranski (1972), Dubois-Violette, Guyon & Pieranski 
(1973) and Pieranski, Dubois-Violette & Guyon ( 1 9 7 3 ~ ) .  In  particular they found 
that a stationary-roll-type instability was possible at  much lower thresholds than 
that required for isotropic liquids of similar properties, and in the caae of a homeotropic 
configuration one must heat the upper plate. 

An obvious question which poses itself is whether convection is possible when the 
lower plate is heated. In  an attempt 'to answer this question, Lekkerkerker (1977, 
1979) presents analyses which predict that an oscillatory convective instability is 
possible in this event. Guyon, Pieranski & Salan (1979) describe observations of just 
such an instability in samples of 5 mm thickness and they employ a simple one-dimen- 
sional model to analyse their results. For such comparatively thick samples, it appears 
necessary to apply a uniform magnetic field vertically across the plates so as to maintain 
the initial homeotropic alignment at the boundaries. Guyon et al. (1979) and Lekker- 
kerker (1979) examine the variation of the critical temperature gradient with magnetic 
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field and predict the strength of magnetic field at  which there is a transition from the 
oscillatory instability to a stationary one. Velarde & Zuniga (1979) have employed a 
rather crude Galerkin method to obtain approximate numerical solutions to this 
problem. 

Since a very nice physical description and explanation of the mechanism which 
induces the oscillatory type of instability may be found in the papers by Lekkerkerker 
(1977,1979) and Guyon et al. (1979), we do not dwell upon it here. The purpose of this 
paper is to present a detailed numerical investigation into the occurrence of both 
stationary and oscillatory convective instabilities in homeotropic configurations when 
a uniform magnetic field is applied parallel to the initial molecular orientation. We 
seek to obtain accurate numerical values for the critical temperature gradient a t  which 
instability occurs. To achieve this the governing equations are linearized about a 
known equilibrium solution and a system of linear, ordinary differential equations is 
obtained which determines the behaviour of the individual Fourier modes of the 
disturbance. Employing expansions in Chebyshev polynomials to approximate the 
solution of this system of differential equations, one then uses the QR matrix eigen- 
value algorithm to solve the resulting linear, algebraic eigenvalue problem. The 
method employed here is analogous to that used by Orszag (1971) in his treatment 
of the Orr-Sommerfeld stability equation. The results obtained are then compared 
with those of other authors. 

2. The continuum equations 
Detailed accounts of the physical properties of nematic liquid crystals and the 

continuum theory describing their macroscopic behaviour are readily available in 
the books by de Gennes (1974) and Chandrasekhar (1977) and the reviews by Stephen 
& Straley (1974), Ericksen (1976) and Leslie (1980). Hence only a summary of the 
phenomenological equations proposed by Ericksen (1961) and Leslie (1968a, b, 1969) 
to describe their behaviour is given here. 

The theory provides equations which determine the velocity vector field v, the 
director d and temperature T, where d is a unit vector which describes the orientation 
of the anisotropic axis of these transversely isotropic liquids. With the assumption of 
incompressibility, the pertinent equations are the constraints 

divv=O, d . d = 1  (2.1) 

T8 = r-qi,i+fijAi,-&Ni, S = -aW/aT, 
where 
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Cartesian tensor notation is employed, so that repeated tensor indices are subject to 
the usual summation convention and a comma preceding a subscript denotes differen- 
tiation with respect to the appropriate spatial co-ordinate. In addition a superposed 
dot indicates a material time derivative. In  these equations p is the density, IJ a 
positive inertial coefficient and r the heat supply function per unit volume per unit 
time, taken to be zero throughout this paper. The arbitrary scalar functions p and y 
arise from the constraints of incompressibility ( 2 . 1 ~ )  and fixed director magnitude 
(2.lb), respectively, while F represents any external body force present and G any 
generalized external body force acting. W is the stored-energy function per unit 
volume and we adopt the form proposed by (Oseen 1929) and Frank (1958) 

= 2& + K2d&, di,j + ( K l -  K 2 - K 4 )  '$,i ' , j  +K4d$.j 'I ,$  + ( K 3 - K 2 )  '$ ', dk,i 'k.5' 

(2.6) 

The material parameters in the theory are dependent upon temperature alone and 
must satisfy the relations 

In calculations, we assume the additional constraint proposed by Parodi (1970) 

y1 = u3-u,, y ,  = U6-u , .  (2.7) 

U,+U3 = U(34U5. (2.8) 

3. Formulation of the problem 
The problem under investigation here concerns the stability of a sample of nematic 

liquid crystal contained between two horizontal plates of infinite extent when subjected 
to a vertical temperature gradient. The upper plate situated at  z = k is held at  a 
constant temperature T, while the lower plate situated a t  z = 0 is kept a t  a constant 
temperature TI. This paper examines the particular problem in which a homeotropic 
orientation obtains at  the plates and a uniform magnetic field is applied vertically 
across the plates. 

We assume that external body forces only arise from an applied uniform magnetic 
field H = (0, 0, H) and gravity. Thus, accepting the forms proposed by Ericksen (1962), 
it readily follows that 

F = ( O , O ,  -/-V), G = Xa(H - d) H, (3.1) 

where g is the acceleration due to gravity and xa is a constant coefficient denoting the 
anisotropic part of the magnetic susceptibility. One obvious solution of equations 
(2.1)-(2.4) is the equilibrium configuration in which 

and hence 
v = 0, d = (0, 0, i), T = TO(Z), (3.2) 

y = -xaH2,  To = # z + T ~ ,  p = @-pgz, (3.3) 

where # is the constant temperature gradient (T, - Tl)/h and @ is a constant. We now 
examine the situation in which this equilibrium configuration is disturbed by a small- 
amplitude velocity field v with which one associates a director field d + n, a tempera- 
ture field To(z)+s,  a pressure field p+j5 and a director tension field - x a H 2 + Y .  
Assuming that the magnitudes of the perturbation fields v, n, 3, s, 7 and their deriva- 
tives are small compared to unity, one now linearizes equations (2.1)-(2.4) about the 
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above equilibrium solution. Adopting the usual Boussinesq approximation ( 1903) the 
linearized equations take the form 

(3.4) vi,i = 0, dini = 0, 

as 
at -+#v3 = Kls,ii+Kzdjdis,ij+ # ~ ~ ( e ~ d ~ n ~ , ~  +ejdjn,J,  (3.7) 

where the coefficients Aijkm, Bijk, cijh and Dijk are defined by 

2Aiikrn = 20114 d jdkdm + (aZ + a5) 6ikdi d ,  + (a3 + ole) &,-didj + a,& S,, 
+ (a5-a2)Gijdkdm9 

Bijk = a26ijdk+a36jkdi, 2Dijk = ( r l -Y2)6 i jdk - (y2+y l )S ,kd i ,  

Cijkm = K2SijSkm+ ( K l - K , )  &jk6{,+ (K3-K2) aijdkdm, 

Sir is the Kronecker delta and e = ( O , O ,  1). We note that (3.7) results when (2.4) is 
divided by the quantity -TPWo/aT2. Hence in (3.7) the K’S represent thermal 
diffusivities whereas in (2.4) they represent thermal conductivities. 

One now investigates the stability of the uniform homeotropic configuration with 
respect to disturbances of the form 

v = (vU1,0,v3)exp[im(x-kt)], n = i(n,O,O)exp[im(z-kt)], ( 3 . 8 ~ ’  b) 

s = s exp [im(x - kt)],  ( 3 . 8 ~ )  

where vl, v3, n and s are functions of z alone and k is in general complex. One observes 
that (3.4b), (3.5b) and (3.6b) are satisfied identically by (3.8) while ( 3 . 6 ~ )  determines 
7 and (3.4) gives vl in terms of v3. Elimination of 1, between equations (3.5a, c) finally 
yields the system of equations 

(D4+Alm2D2+A2m4)v3+(A3maD2+ A,m4)n+A,m4s = 0, ( 3 . 9 ~ )  

(D2 -+ Blm2) v3 + (B,D2 + B3m2) n = 0, (3.9b) 

(3.9c) (D2 i- Elm2) s + Earn% +Earn%, = 0, 
where 

= { - ( 2 a 1 + r , + r b ) + 2 p i k m } / r l b ,  = (qa-2ipk/m)/7b’ 

A3 = - 2a2ki/%, A ,  = - 2a3ki/?jb, A ,  = 2pfg/m21]b, 

2K m -2(Klm- y,ik+XaH2/m-aimk2) 
Bl=&k&, B 2 = A  9 J33 = 

Y2 - Y1 Y1-Ya Y1- Y2 
1 

El = ( - mK1 + ik)/mK, E2 = - #K2/mK, E,  = - $/maK, 

qa = a4+a3+ag, r b  = a4+a5-o12, K = K ~ + K ~ ,  D = d/dz .  

For reasons discussed by Pieranski et al. (1973b), it  seems reasonable to neglect the 
director inertia term in (3.9b) and so we set u = 0 throughout the remainder of this 
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paper. One now requires to solve the three equations (3.9) for v,, n and s subject to the 
boundary conditions 

v, = Dv, = s = n = 0, (3.10) 
onz = Oandz = h. 

Solutions are obtained using expansions in Chebyshev polynomials and, to invoke 
the orthogonality properties of this set of polynomials, it is convenient to impose 
boundary conditions at f 1. To this end one introduces the new independent variable 

c= (22-h)lh (3.11) 

and makes a transformation from z to 6 in (3.9) and (3.10). Transformation of (3.9) 
yields the set of equations 

(q + p l B f + p z )  pt+p38+ ik((8,D; + 8,) pt+ (8,D; + 8,) E} = 0, ( 3 . 1 2 ~ )  

(021 +pq) + +pa) TZ + ikt36E = 0, (3.12 b )  

(D21+~)I+p,~+pev+iks6B = 0, (3.1%) 

are the transforms of v,, s and n respectively. The where D, = d/dg and p t ,  I and 
coefficients in (3.12) are real quantities defined by 

P A ,  = pl + iki?,, b4A2 = p, + ik8,, b2A3 = ikb’,, b4A4 = ik8,, b4A5 = p3, 

bZB, = pa, B, = ps, b2B3 = p6 + ika,, bZE, = p7 + ik86, b2E, = pe, b2E3 = ps, 

where b is a non-dimensional wavenumber defined by b = gmh. One now requires to 
find solutions of the equations (3.12) subject to the transformed boundary conditions 

v = D,jj = 3 = 5 = 0, (3.13) 
on C =  f 1. 

For a given value of the magnetic field, H, the mathematical problem is that of 
determining values of the parameters b, 4 and k for which there are non-trivial solutions 
of (3.12) and (3.13). Apart from H, b, 4 and k, all quantities appearing in the coefficients 
of (3.12) are material parameters which are determined from empirical data. For 
prescribed values of b and 4 suppose that non-trivial solutions exist for a set of k 
values denoted by W) = 7@ + ik(lf), j = 1,2, . . . , where k#) and k(j) are real, and values 
are ordered so that ky’ 2 k‘f) 2 kf) 2 . . . . The value k(l) corresponds to the least stable 
mode associated with the prescribed temperature gradient, 4, and wavenumber, b, 
and this mode is unstable only if ky) > 0. If an unstable mode is found for a particular 
wavelength, the temperature gradient at which disturbances of this wavelength 
become unstable is determined by adjusting 4 until ky) = 0. Values of b and 4 for 
which this occurs yield a point on the neutral stability curve and the value of 4 with 
minimum modulus on this curve is called the critical temperature gradient for the 
liquid crystal sample. 

In  the introduction reference is made to stationary and oscillatory convective 
instabilities in liquid crystal samples. The nature of an unstable mode is determined 
by the sign of the real part of k associated with this mode. Suppose a non-trivial 
solution exists for k = k,+ik,, where k, > 0. If k,, = 0 the solution corresponds to a 
stationary instability whereas if krt 0 the solution corresponds to an oscillatory 
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instability. In  this latter case we shall see that a solution also exists for k = - k, + ik,. 
It follows that oscillations in the disturbance arise from the terms 

exp ( imk,t) = exp ( & 2ibkRt/h) 

and that they have frequency w = 2b I knl /h. It is of interest to note at  this point that 
the principle of exchange of stabilities, as used by Barratt & Sloan (1976), may only 
be employed to determine critical temperature gradients if the least stable mode is 
stationary, that is if ka )  = 0. 

4. Method of solution 
We seek approximate solutions to (3.12) and (3.13) using expansions in series of 

Chebyshev polynomials. Orszag (1971), in his treatment of the Orr-Sommerfeld 
equation, discusses the advantages of Chebyshev polynomials relative to other sets 
of orthogonal polynomials. In particular, he shows that if the coefficients of a linear 
differential equation are infinitely differentiable the approximation obtained is of 
infinite order in the sense that errors decrease more rapidly than any power of 1/N 
as N --f co, where N is the number of Chebyshev polynomials retained in the approxi- 
mation. The required properties of Chebyshev polynomials are outlined below and 
further details, if required, may be obtained in the paper by Orszag (1971). 

Suppose v(C) is an infinitely differentiable function for - 1 < C d 1 and let the 
Chebyshev expansions of v(6) and its derivatives dqv/dCq be 

where up) = a, and P,(C) is the nth-degree Chebyshev polynomial of the first kind, 
defined by 

for n = 0,1,2, .... The properties of T,(C) may be used to express a',") in terms of co- 
efficients in the expansion of dq--'v(C)/dCq-l. Orszag (1971) has shown that 

T,(COS e) = COS no (4.2) 

where c,, = 2 and cp = 1 for p > 0.  By adding equations (4.3) for p = n + 1, n + 3, n + 5 ,  
. .. and assuming that 1a$)1 and IaF-l)] vanish appropriately a s p  -+ co one obtains 

p + n  = 1 (mod2). J 
The set of differential equations (3.12) contains derivatives of orders two and four 
and in order to relate Chebyshev expansions of derivatives such as d2v(C)/dc2 and 
d4v(C)/dC4 to  the Chebyshev expansion of v(C) it is essential to express a:) and a::) in 
terms of the coefficients in (4.1) with q = 0. These results are readily obtained on 
setting q = 1,2,3,4 in (4.4), and the required relationships are 

m 

c,a$? = E p(p2-n2)ap,  n 2 0,  
p = n + 2  

p r n  (mod2). 
(4.5) 
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and 

(4.6) 

a0 

24cnug) = Z p(p2  - n2) [ ( p  - n)2 - 41 [ ( p  + n)2 - 41 up, n 2 0,  
p = n + 4  

p s n  (mod2). 

We now return to the system of differential equations (3.12) and approximate the 
dependent variables and their derivatives by means of the truncated Chebyshev 
expansions 

I N 

n=O 
dqz(C)/dCq = 2 #r?%(C), 

If the expansions (4.7) are substituted in (3.12) the orthogonality properties of 
Chebyshev polynomials may be used to derive a system of linear algebraic equations 
in qS$, T+$ and B($ for q s 0,2, 4 and n = 0, 1, . . . , N. Coefficients with superscripts 2 
and 4 may be eliminated from this algebraic system by means of the relationships 
(4.5) and (4.6). The appendix to this paper contains the derivation of a system of 
homogeneous, linear equations in q5n E @, 7, = 7:)) 8, = 8:) for n = 0, 1, . . . , N. The 
solution of this linear system may be used with expansions (4.7) to provide an approx- 
imate solution to the differential equations (3.12) and boundary conditions (3.13). 
Here, of course, we are only interested in finding values of k for which the linear 
system of algebraic equations has a non-trivial solution. 

In  the appendix it is shown that the linear algebraic equations in q5,, qn, 8, separate 
into two sets with no coupling between odd subscript coefficients and even subscript 
coefficients. Solutions of the even-subscript system yield approximations to G)  3 and 
Ti which areeven functions of 6 and solutions of the odd-subscript system yield approx- 
imations to V,3 and Ti which are odd functions of C. In the even system it is convenient 
to replace N by 2M, n by 2m, and to introduce the transformations 

+w = $m, rm = 8% = om. 

In  the appendix we show that the linear system associated with the even solution of 
(3.12) is 

M M 

q=m+l  q=m+1 
+ i k  [8& Z Fm$q+82cm$m+8S3 $m8q+84cml?m] = 0, ( 4 . 8 ~ )  
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where Fm = q(q2-m2) and m = 0, 1, ..., M. The linear algebraic equations associated 
with the even-subscript solution of the boundary conditions are 

M M M M A  2 $q = 0, 2 q2$q = 0, z qq = 0, x 6, = 
q = o  q=o q=o q=o 

(4.9) 

Linear equations analogous to (4.8) and (4.9) and associated with the odd-subscript 
solution are given in the appendix. We shall see later, however, that interest is centred 
on the even solution. 

Equations (4.8) and (4.9) constitute a system of 3 N +  7 equations in 3M+ 3 un- 
knowns and this system has only the trivial solution in which all Chebyshev coefficients 
are zero. We resolve this over-specification by means of Lanczos’s 7 method (Lanczos 
1956). The integer m is restricted to the range m = 0,1, . . . , M - 2 in the first equation 
of (4.8) and to the range m = 0,1, ..., M -  1 in the second and third equations. The 
restriction imposed upon m is equivalent to solving the original set of equations (3.12) 
and (3.13) for an approximate solution which is even in [, with the additional terms 

7i?2 T N - 2 ( [ )  + 72 TN([), 7$’T’,( [), 7%’)N([), 

on the right-hand sides of the first, second and third equations, respectively, in (3.12). 
The parameters 7#L2 and 7W, j = 1,2,3,  may be obtained, if required, in terms of the 
coefficients 

70, 7 2 ,  . . * Y  TN; 

The 7 parameters may be used to estimate the errors in the approximations. Similar 
arguments apply to the odd solution and the over-specification is resolved on restrict- 
ing m in the manner described for the even solution. 

With m restricted as described, system (4.8)-(4.9) may be written in matrix form as 

(A+ikB)X = 0, (4.10) 

where A and B are real matrices of order 3M + 3 and X is a vector whose components 
are the Chebyshev coefficients $,, q,, 8,,j = 0,1,. .., M .  In  the computations to be 
described,rows 3M to  3M + 3 of (4.10) were formed using the boundary equations (4.9) 
so that the final four rows of B contain only zero entries. Equation (4.10) may be 
written as 

A X  = ABX, (4.11) 

where k = hi, and the problem of finding values of k for which there are non-trivial 
solutions of (3.12) and (3.13) becomes that of solving the generalized eigenvalue prob- 
lem described by (4.11). Permissible values of h occur in complex conjugate pairs and 
this verifies a point made in Q 3 that permissible values of k with non-zero real part 
occur in pairs f k, + ik,. 

The first stage in solving (4.1 1) for eigenvalues h exploits the fact that B has zeros 
in all entries of the final four rows. Using column operations, with partial pivoting, 
all elements in the final four rows of A are set to zero, apart from those on or to the 
right of the main diagonal. The matrix A has thus been transformed to A@) = AQ, 
where Q is a non-singular matrix representing the column operations. The same 
transformation is applied to B and (4.1 1) is thereby transformed to 

$09 $2, e a - 9  $hG 00, 0 2 ,  * a * ,  0,. 

A(U XtU = AB(U XW, 
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where X(1) = Q-lX, B(1) = B Q  and B(l) has zeros in the final four rows. If the product 

differs from zero the eigenvalues are solutions of det [A(*)- hBa] = 0, where A(2) and 
B(2) are the leading 3M - 1 by 3M - 1 submatrices of A(l) and B(l), respectively, and 
[A(l)kj = a::),. If the aforementioned product is zero the reduction fails. This failure 
did not occur in any of the computations which were performed. When Bt2) has full 
rank the values of h are given as the eigenvalues of [B(2)]-1 A(2). Assuming no difficulties 
are encountered in the inversion of W2), the matrix [B@)]-l A(2) is balanced using the 
algorithm described by Wilkinson and Reinsch (1971) and the eigenvalues are ob- 
tained by means of the QR algorithm. 

The method described above was used with some of the data and no difficulties arose. 
However, to guard against the possibility of BC2) having numerical rank less than 
3M - 1 we include a modification based on the work of Gary & Helgason (1970). The 
method is clearly described by these authors and an outline should suffice here. Row 
and column operations are used with complete pivoting to find non-singular PO and 
Q(2) so that B(3) = P(2)B(2)Q(2) is diagonal, with 

I f  
IBzil > E for i Q R and 1B$:iI Q E for i > R, 

where E is a small positive tolerance, then the rank of B(3) is taken as R. In  the com- 
putation E was given the value 10-6. A(2) is now transformed to A@) = P(*)A(2)Q(2) and 
column operations are then used to nullify those elements of A(3) which lie to the left 
of the main diagonal in rows R + 1 to 3M - 1. If the transformed A@) is Ac4) = A(3)Q(3) 
then B(3) is transformed to B(4) = B(3)Q3). Assuming the product 

301-1 

i-R+1 
ll 4:i 

differs from zero the eigenvalues are solutions of det [A(5)- hB(5)] = 0, where A(5) and 
W5) are the leading R by R submatrices of A(4) and Bc4), respectively. Thereafter the 
method is as described in the previous paragraph. The reduction algorithm of Gary & 
Helgason (1970) was included in the calculations described in the next section and in 
all cases it was found that R = 3M- 1. 

5. Numerical results 
Employing available experimental data for MBBA, we adopt the Parodi (1970) 

relation and take the values for viscosities as given by Giihwiller (1971). Also we 
consider the thermal conductivities and the elastic constants to have the values as 
stated by Dubois-Violette (1974), these being based on experimental observations of 
Vilanove et al. (1974) and Haller (1972). In c.g.s. units we therefore set the parameters 
(a1, a2, . .., a6), (Kl, K3),  (yl,yz), ( K ~ ,  K ~ )  equal to the values (6.5 x 
- 1.2 x 
- 78.7 x (9.3 x 6.1 x The constant xa which denotes the anisotropic 
part of the magnetic susceptibility is given the value 1 . 2 3 ~  and the applied 

- 77.5 x 
(76.3 x 83-2 x 10-2, 46.3 x - 32-4 x lo-#), (6 x lo-', 7 x 
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M lo3 x k(') 

9 - 9,28420 + 6.469193 
10 - 9,28522 + 6.468083 
11 - 9.28520 + 6.467853 
12 - 9*28514+ 6.467813 
13 - 9.28504 + 6.467783 

TABLE 1. Approximations to Ex) using M + 1 even-degree, Chebyshev polynomials 
with H = 0,  # = - 24, b = 1.5. 

~~ ~~ ~ ~~ ~ ~~ ~ ~ 

Mode number Even or odd lo3 x k ( J ) , j  = 1,2, ..., 8 

1 E - 9.285 + 6.4683 
2 E + 9.285 + 6.4683 
3 E - 0.2053 
4 0 - 0.2063 
5 0 - 0.888i 
6 E - 0.9003 
7 E - 1.2433 
8 0 - 1.423i 

TABLE 2. The eight least stable modes for H = 0, # = - 24, b = 1.5. 
Even (E) and odd (0) eigenmodes are listed. 

17 

16 

15 

14 

13 
I I 1 1 1 * 

b 

FIGURE 1. Neutral stability curve for MBBA at three values of magnetic field. 
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FIGURE 2. Effect of magnetic field on stability. Critical temperature gradient -$ is plotted 
against H2 x lo-*. Heavy line and broken line correspond, respectively, to oscillatory and sta- 
tionary modes of convection. 

magnetic field, H, is expressed in gauss. The density p is given the value 1, the term 
p'g is taken as - 1 and the sample thickness is assumed to be 5 mm throughout the 
calculations. 

Preliminary numerical experiments were conducted to determine a suitable value 
for the integer M, where M + 1 is the number of even or odd Chebyshev polynomials 
used in the expansions of dependent variables. Noting the relation k = A i l  we see 
that as M increases the eigenvalue of (4.17) should converge to those values of -ik 
for which there are non-trivial solutions of the equations (3,12)-(3.13). In  all com- 
putations a large positive real eigenvalue of (4.17) is obtained. This eigenvalue varies 
greatly with M and it is considered to be a spurious eigenvalue of equations (3.12)-( 3.13). 
Interest is directed on the least stable mode of this differential system and trial 
computations indicate that the associated value ICcl) may be obtained sufficiently 
accurately with M = 11. Table 1 gives several approximations to for the even 
solution with H = 0, q5 = - 24, b = 1.5. For this data set, ICc1) may be obtained correct 
to 4 significant figures with M = 11. This value of M was used throughout the 
computations on the assumption that computational errors might then be less than 
errors in experimental data. Trial computations also indicate that the least stable 
mode is associated with the even solution. In  table 2, for example, the eight least stable 
modes are listed for H = 0, q5 = - 24 and b = 1.5. We note that the pairs of modes 
3 and 4 , 5  and 6 are almost coincident. Since the least stable mode is associated with 
symmetric eigenmodes we restrict our attention henceforth to the even solutions. 
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FIGURE 3. Frequency of oscillation of oscillatory modes. Frequency of 
the least stable mode is plotted against H 2  x lo-'. 

Figure 1 shows the neutral stability curve for MBBA at three values of the applied, 
transverse magnetic field. For a particular value of the dimensionless wavenumber, 
b,  the point on the neutral stability curve is obtained by computing k(') at a set of 
increasing values of - 4. The value of - 4 is found for which kil) = 0 and this yields 
a point on the curve. If the magnitude of the temperature gradient, - $, is less than 
this value any disturbance with wavenumber m = 2b/h is damped as time progresses. 
A value of q5 which yields a point in the inner region of the curve permits the existence 
of unstable disturbances with this wavenumber. The value of q5 at the minimum 
point on the curve gives a measure of the dimensionless temperature gradient which 
may be imposed before disturbances of the type considered here become unstable. 
This is the critical temperature gradient and it is therefore a quantity of physical 
interest. The critical temperature gradients are $ = - 13.5,q5 = - 14-0 and $ = - 15.4, 
respectively, for H = 0, H = 100 and H = 200. At H = 0 the minimum occurs a t  
b = 1.6 and the value of b a.t the minimum increases slowly with H ,  taking the value 
1.7 at H = 200. We observe that the liquid crystal sample becomes more stable as 
the magnetic field increases from zero. 

To examine the effect of magnetic field on stability, we obtained the minimum 
points on the neutral stability curves at increasing values of H .  Figure 2 shows the 
critical temperature gradient, - 4, plotted as a function of H 2  x over A wide range 
of magnetic field. For H between 0 and approximately 775 the critical temperature 
gradient increases almost linearly with H2. The deviation from linearity arises from 
a slight concavity of the curve in this region. The value of b a t  the critical points 
increases from 1-6 at I .  = 0 to 2.3 at H = 775. The real part of k(l) is non-zero over 
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Barratt & Velarde & 
Guyon et al. Sloan Zuniga Lekkerkerker 

Critical temperature 5.5" c 6.75 "C 12 "C 

Period 2n/w (H = 0) 117 s 120 s 200 s 
difference ATo ( H  = 0) 

Period (2n/o) (o = max) 110 s 80 s 170 s 170 s 
Magnetic field H (w = max) 400 gauss 490 gauss 300 gauss 180 gauss 
Magnetic field HT at transition 650 gauss 

Critical temperature 15 "C 17.3 "C 

660 gauss 775 gauss 
between instabilities 

difference AT, (H = HT) 
TABLE 3 

this portion and the least stable mode is of oscillatory type with frequency given by 
w = 2blk,l lh .  Figure 3 shows the behaviour of w with H2 x and we observe that 
w initially increases to a maximum around H = 490 and then it diminishes with further 
increase in H, reaching the value zero at H = 775. For H > 775 the value of is 
purely imaginary for q5 close to the critical value and the least stable mode is stationary 
in this region. At approximately 775 gauss there is a transition from an oscillatory 
instability to a stationary instability. The broken line in figure 2 shows the temperature 
gradient at which the least stable stationary mode becomes unstable. We observe 
that as the magnetic field is increased beyond the transition point there is an initial 
destabilizing effect. When His  greater than the transition value the least stable mode 
is a stable oscillatory mode for values of -6 well below the value shown by the broken 
curve in figure 2. As - q5 is increased kf) increases and Ikg)) decreases and the latter 
becomes zero at a value of - q5 below the broken curve. For ,- q5 between this point 
and the critical value k(l) and u2) are purely imaginary with ky) and ki2) both negative. 
There is therefore a region immediately below the broken curve in figure 2 within 
which the least stable mode is a stable stationary mode. The interface of physical 
interest is that which separates the stable and unstable regions, however, and this is 
given by the curve in figure 2. 

6. Discussion of results 
Employing expansions in Chebyshev polynomials, we have obtained accurate 

numerical solutions for threshold gradients at which thermal convection appears when 
a homeotropically aligned nematic is heated from below. Our results together with the 
experimental results of Guyon et al. (1979) and the theoretical results of Velarde & 
Zuniga (1979) and Lekkerkerker (1979) are listed in table 3 above. It should be 
noted that some results are not given explicitly by other authors but have been 
estimated from graphs presented by them. Also, although all results reported are for 
MBBA, the values of material parameters used in calculations are not usually stated. 
The period referred to in table 3 is the period of oscillation of the least stable mode 
at the onset of instability. 

The most comprehensive comparison of our results possible is with the experimental 
results of Guyon et al. (1979). The agreement between them both qualitatively and 
quantitatively seems rather good. Apart from experimental error, some differences in 
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results could arise if the empirical values for material parameters employed in calcu- 
lations are not precisely those pertaining to the material used in the experiments. 
The greatest discrepancies between theory and experiment seem to occur when large 
magnetic fields are present and hence higher threshold gradients are required for the 
onset of the thermal instability. In  such cases with temperature differences as high as 
15-20 "C other physical effects, neglected in the preceding analysis, may well 
become important and so render the above results unreliable. In  particular the 
Bonssinesq (1903) approximation is probably invalid for such large temperature 
differences where changes in the material parameters with temperature might well 
be significant. This could be related to the fact that observed thresholds are lower than 
those predicted by the theory employed. From a qualitative viewpoint, our results 
confirm that the main physical features of the instability are well described by the 
rather simpler analyses of Guyon et al. (1979) and Lekkerkerker (1979). In  comparing 
our results with those found by Velarde & Zuniga (1979) using a first-order Galerkin 
method, it is not surprising that there are some noticeable quantitative differences 
between them. The most significant being that in the absence of any magnetic field 
they predict a critical temperature gradient which is approximately double that found 
here. Finally it is of interest to note that the least stable mode is an even mode as was 
found to be the case by Barratt & Sloan (1976) in two rather similar experimental 
situations. 

In  closing, it must be admitted that only a limited chss of infinitesimal disturbances 
has been considered and consequently one is unable to say anything concerning 
stability with respect to arbitrary infinitesimal disturbances below the threshold 
gradients predicted here. However, they are more general than those allowed for by 
Guyon et nl. (1979) and Lekkerkerker (1977, 1979) and also seem to be consistent with 
experimental observations of Guyon et al. Further comparison between experimental 
results and accurate solutions for a wide variety of nematic materials would be useful 
as a check on the predictions of the continuum theory. Also a theoretical investigation 
incorporating non-Boussinesq effects would be well worth while provided such an 
analysis is manageable. 

Appendix 
In  the appendix we derive the linear systems of equations (4.8) and (4.9) associated 

with the even solution and we give the analogous systems associated with the odd 
solution. If the expansions (4.7) are substituted in (3.12) the coefficients of T,(C) may 
be equated, by virtue of the orthogonality properties of the Chebyshev polynomials. 
This process yields 

where q5n = q5$:), qn = 7:) and On = 8:). The coefficients with superscripts 2 and 4 may 
be expressed in terms of the basic coefficients using (4.5) and (4.6), with the summations 
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over p truncated at  N .  This reduction process leads to the linear system of algebraic 
equations 

N 

I; p p n ~ p + f / l l C n ~ n + ~ 8 C n e n + ~ S C n + n + i k 8 6 c n ~ n  = '3 
p=n+2 J 

for 0 < n < N ,  where Fpn = p(p2 - n2) and summations over p are restricted such that 
p = n(mod2). If the expansions (4.7) are used in the boundary conditions (3.13) one 
finds, on using the properties Tn( & 1) = ( f 1)n and T;( f 1 )  = ( f 1)n-ln2, that 

with n = 0 (mod2) in (A 2) and n = 1 (mod2) in ( A  3). The equations ( A  1)-(A 3 )  
separate into two sets with no coupling between the odd-subscript coefficients and 
the even-subscript coefficients. There are solutions of the algebraic equations in 
which all the coefficients with odd subscripts are identically zero and these solutions 
yield approximations to 8, 3 and % which are even functions of 5. In  another set of 
solutions of (A 1)-(A 3 )  all the coefficients with even subscripts are zero and this set 
yields solutions for 3, 5 and % which are odd functions of 6. To examine the even 
solution it is convenient to replace N by 2M. On introducing the transformations 
n = 2m, p = 2q, cn = c,, 4% = $,, T~~ = q,, 8, = 8, the even equations in ( A  1 )  
readily transform to equations (4.8). The boundary equations (A  2 )  give rise to the 
system (4.9). 

In  an analogous manner, the odd solution is simplified by means of the transforma- 
tion N = 2 M  + I ,  n = 2m+ 1 ,  p = 2q + 1, cn = 1, $%+I = $m, TZ~,+I = Trn, e2m+i = Pn5- 

The odd equations in (A 1) yield the system 

A 
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where G4, = (2q + 1) (p + m + 1) (q - m) and m = 0,  1,  . . ., M .  Equations (A 3) become 
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